
No frame left behind: Full Video Action Recognition

Xin Liu1 Silvia L. Pintea1 Fatemeh Karimi Nejadasl2 Olaf Booij2 Jan C. van Gemert1

Computer Vision Lab, Delft University of Technology1 TomTom2

Abstract

Not all video frames are equally informative for recog-

nizing an action. It is computationally infeasible to train

deep networks on all video frames when actions develop

over hundreds of frames. A common heuristic is uniformly

sampling a small number of video frames and using these

to recognize the action. Instead, here we propose full video

action recognition and consider all video frames. To make

this computational tractable, we first cluster all frame acti-

vations along the temporal dimension based on their simi-

larity with respect to the classification task, and then tem-

porally aggregate the frames in the clusters into a smaller

number of representations. Our method is end-to-end train-

able and computationally efficient as it relies on tempo-

rally localized clustering in combination with fast Ham-

ming distances in feature space. We evaluate on UCF101,

HMDB51, Breakfast, and Something-Something V1 and V2,

where we compare favorably to existing heuristic frame

sampling methods.

1. Introduction

Videos have arbitrary length with actions occurring at

arbitrary moments. Current video recognition methods use

CNNs on coarsely sub-sampled frames [2, 24, 28, 31, 38,

41, 45, 47, 48, 50] because using all frames is computa-

tionally infeasible. Sub-sampling, however, can miss cru-

cial frames for action recognition. For example, as shown

in Fig. 1, sampling the frame with the dish in the pan is cru-

cial for correct recognition. We propose to do away with

sub-sampling heuristics and argue for leveraging all video

frames: Full video action recognition.

It is worth analyzing why training CNNs on full videos is

computationally infeasible in terms of memory and calcula-

tions. The calculations in the forward pass yield activations,

while the backward pass calculations give gradients which

are summed over all frames to update the weights. Many

of these calculations can be done in parallel and thus are

well-suited for modern GPUs. When treating videos as a

large collection of image frames, the amount of calculations

are not too different from those on large image datasets [5].

Make scrambled eggs

Make pancakes

Make scrambled eggs

Heuristic frame sub-sampling 2

Make scrambled eggs

Heuristic frame sub-sampling 1

Proposed: Full video action recognition

0 1

1 00 1 1

1 0 1

1 0 0

All frames

Figure 1. Sub-sampling can miss crucial frames in videos and

may cause confusion for action recognition: e.g. compare the two

sub-samplings heuristics in row 1 and row 2: Without sampling

the dish in the pan it is difficult to classify. Instead, as shown

in row 3, we propose to efficiently use all frames during training

by clustering frame activations along the temporal dimension and

aggregating each cluster to a single representation. The temporal

clustering is based on Hamming distances over frame activations,

which is computationally fast. With the assumption that similar

activations have similar gradients, the aggregated representations

approximate the individual frame activations. We efficiently uti-

lize all frames for training without missing important information.

Regarding memory, however, there is a crucial difference

between videos and images: The video loss function is not

per-frame but on the full video. Hence, to do the backward

pass, all activations for each frame, for each filter in each

layer need to be stored in memory. This even doubles for

storing their gradients. With 10-30 frames per second, this

quickly becomes infeasible for even just a few minutes of

video. Existing approaches can trade off memory for com-

pute [3, 4, 13] by not storing all intermediate layers, yet

they do not scale to video as they would still need to store

each frame. The main computational bottleneck for training

video CNNs is memory for frame activations.

Here, we propose an efficient method to use all video

frames during training. The forward pass computes frame

14892

activations and the backward pass sums the gradients over

the frames to update the weights. Now, if only the network

was linear, then a huge memory reduction could be gained

by first summing all frame activations in the forward pass,

which would reduce to just a single update in the back-

ward pass. Yet, deep networks are infamously non-linear,

and have non-linearities in the activation function and in

the loss function. Thus, if all frames were independent,

treating the non-linear network as linear would introduce

considerable approximation errors. However, subsequent

frames in a video are strongly correlated, and it’s this corre-

lation that makes it possible for existing approaches to use

sub-sampling. Instead of sub-sampling, we propose to pro-

cess all frames and exploit the frame correlations to create

groups of frames where the network is approximately linear.

We use the ReLU (Rectified Linear Unit) activation func-

tion, which is linear when the signs of two activations agree,

to estimate which parts of the video are approximately lin-

ear. This allows us to develop an efficient clustering algo-

rithm based on Hamming distances of frame activations as

illustrated in Fig. 1. By then aggregating the approximately

linear parts in a video in the forward pass, we make large

memory savings in the backward pass while still approxi-

mating the full video gradient.

We summarize the contributions of our work as follows:

• We propose a method that allows us to use most or

even all video frames for training action recognition

by approximated individual frame gradients with the

gradients of temporally aggregated frame activations;

• We devise an end-to-end trainable approach for effi-

cient grouping of video frames based on temporally

localized clustering and Hamming distances;

• Extensive experiments demonstrate that our method

compares well to state-of-the-art methods on sev-

eral benchmark datasets such as UCF101, HMDB51,

Breakfast, and Something-Something V1 and V2.

2. Related work

Action recognition architectures. Actions in video in-

volve motion, leading to deep networks which include op-

tical flow [8, 10, 34], 3D convolutions [2, 6, 15, 20] and

recurrent connections [10, 35, 40, 39, 46]. Instead of heavy-

weight motion representations, a single 2D image can reveal

much of an action [19, 22, 34, 41]. 2D CNNs are extremely

efficient, and by adding motion information by concatenat-

ing a 3D module in ECO [50], modeling temporal relations

in TSN [49] or simply shifting filter channels over time in

TSM [28] their efficiency is complemented by good accu-

racy. For this reason, we build on the TSM [28] architecture

and modify it for full video action recognition.

Frame sampling for action recognition. Realistic

videos contain more frames than can fit in memory. To

address this, current methods train by using sub-sampled

video frames [2, 28, 41, 50]. Additionally, the SlowFast [7]

network also explores the resolution trade-off across tem-

poral, spatial and channel dimension. Rather than using a

fixed frame sampling strategy, the sampling can be adap-

tive [28, 38, 45, 47, 48], or learned to select the best frame

[31], or rely on clip sampling [24]. In our work we do not

sub-sample frames, but use all frames of the videos, how-

ever our clustering is adaptive as it dynamically adapt to the

task and the loss function.

Using a subset of frames is computationally more effi-

cient. Using 5-7 frames is sufficient for state-of-the-art ac-

tion recognition on short videos [32]. Aiming for training

efficiency, the work in [42] uses stochastic mini-batch drop-

ping which drops complete batches rather than frames, with

a certain probability. Similarly, [44] uses variable mini-

batch shapes with different spatio-temporal resolutions var-

ied according to a schedule. Unlike these methods, we do

not focus on training efficiency, but propose a method that

allows the network to see all video frames during training.

Temporal pooling. To integrate frame-level features,

TSN [41] uses average pooling in the late layers of the net-

work. ActionVLAD [11] integrates two-stream networks

with a learnable spatio-temporal feature aggregation. In-

stead of performing temporal pooling or aggregation at

a late stage of the network, in [9] RankSVM is used to

rank frames temporally and then pool them together. As

a follow-up, in [1] a ’dynamic image’ is introduced, which

is a compact representation of the videos frames using the

‘rank pool’ operation. In [33, 36] temporal aggregation via

pooling and attention is used. Similar to these methods, our

proposal performs a temporal pooling of the network ac-

tivations, however this aggregation is done over clustered

activations and it allows us to process all video frames.

Efficient backpropagation. Given that 2/3 of the train-

ing computations and memory are spent in the backward

pass, existing work focuses on approximations. It is more

memory efficient to recompute activations from the previ-

ous layer instead of storing them [13], however this comes

at the cost of increased training time. In [29] gradient

approximations are used where activations are overwritten

when new frames are seen without waiting for the backward

pass to be performed. Also for efficient backpropagation,

randomized automatic differentiation can be used [30], gra-

dients can be reused during training [12], or even quantized

during backpropagation [43]. Similar to these works, we

use all frames to approximate the full video gradient.

14893

3. Aggregated temporal clusters

3.1. Approximating gradients

We enable the use of all frames of a video during train-

ing. To this end, we calculate a single gradient to approxi-

mate the gradients of a group of frames. Our hypothesis is

that nearby frames in a video are alike, and thus have sim-

ilar activations, leading to congruent updates. When using

the ReLU (Rectified Linear Unit) activation function, we

know that for activations with agreeing signs, the activation

function is linear. Assuming that similar frames are approx-

imately linear, the standard computation of the sum of gra-

dients over all frames, becomes equivalent to first summing

all frame activations and then computing a single gradient.

This is computationally and memory efficient. Mathemati-

cally, for frames i, this can be formulated as:

∑

i

∇wL(h(xiw)) = ∇wL

(

∑

i

h(xiw)

)

, (1)

where x are frame activations, w are the network weights,

h(·) is an activation function, and L(·) is the loss function.

Note that Eq. (1) only holds in the ideal case when the ac-

tivation function h is linear for similar frames and the loss

function L is also linear. This is not generally the case, and

this approximation introduces an error.

With the above ideal scenario in mind, we can use

all video frames without calculating the gradient for each

frame, by grouping frames that agree in the sign of their

activations x. Over these grouped activations we calculate

a single gradient ∇wL(
∑

i h(xiw)). However, for similar

frames the sign of their activation values may not be in com-

plete agreement. Therefore, we aim to find which frames

can be safely grouped together, to minimize the error intro-

duced by our approximation in Eq. (1).

3.2. Error bound for the approximation

For ease of explanation, we consider two input video

frames and their activations x={x1,x2}, and a convolu-

tional operation with parameters w, denoted by xw. The

two frames have the same class label, y, since they come

from the same video. We consider a multi-class setting us-

ing the cross-entropy loss in combination with the softmax

function q, which for these two samples is:

L(x, y) = −
1

2
(log qy(x1) + log qy(x2)) , (2)

where qc(xi)=
exp(h(xiwc))∑

C
j=1

exp(h(xiwj))
, c∈{1, .., C} indexes

video classes and h(·) is the ReLU activation function. The

gradient of the loss with respect to w is:

∇wL(x, y) =
x1(qc(x1)− δyc) + x2(qc(x2)− δyc)

2
,

(3)

where δyc is the Dirac function which is 1 when c=y.

In our method, we first average the two activations af-

ter the convolution and before the ReLU . We can do

this, because if we assume the activations have agree-

ing signs sign(x1w)=sign(x2w), then it holds that:
h(x1w)+h(x2w)

2 = h(x1w+x2w

2). In this case the cross-

entropy loss becomes:

L̂(x, y)=− log qy

(

x1 + x2

2

)

. (4)

In the backward pass, we calculate a single gradient of the

averaged activations as follows:

∇wL̂(x, y) =
x1 + x2

2

(

qc

(

x1 + x2

2

)

− δyc

)

, (5)

We now estimate the relative error introduced by our ap-

proximation by comparing equations Eq. (3) and Eq. (5) us-

ing Jensen’s inequality. We start from the softmax function

qc(·) and we recover back equations Eq. (3) and Eq. (5).

The softmax function qc(·) is convex, therefore we can ap-

ply to it Jensen’s inequality for the samples x1 and x2:

qc

(

(x1+x2)
2

)

≤ qc(x1)+qc(x2)
2 . We start by considering the

case
(x1+x2)

2 > 0. If we multiply both sides of this inequal-

ity with
(x1+x2)

2 we obtain that:

(x1 + x2)

2
qc

(

(x1 + x2)

2

)

≤
x1qc(x1) + x2qc(x2)

2

−
1

4
(x1 − x2)(qc(x1)− qc(x2)). (6)

In the left hand side of the inequality we recover precisely

the ∇wL̂(x, y) given by Eq. (5), while in the right hand

side we recover Eq. (3) minus the approximation error as

∇wL(x, y)− 1
4 (x1 − x2)(qc(x1)− qc(x2)). Note that for

the case y=c the additional Dirac terms in x cancel out.

We now consider also the case
(x1+x2)

2 ≤ 0, which to-

gether with the previous case leads to the following bound

on the absolute difference between the gradients in Eq. (3)

and Eq. (5):

|∇wL(x, y)−∇wL̂(x, y)| ≤
1

4
|(x1 − x2)(qc(x1)− qc(x2))|.

(7)

Thus, the difference between the two gradient updates is

bounded by a function depending on the difference between

the activations and their softmax responses. The closer to 0

the difference between the activations the smaller the dif-

ference between their gradient updates. We show in the

experimental section that, indeed, small differences in the

activations entail small differences in the loss.

The inequality in Eq. (6) holds under the condition that

the sign of activations agree. Therefore, we want to group

frames based on the sign similarity of their activations.

14894

Figure 2. We adopt 2D ResNet-50 with TSM [28] a backbone. The input batch size is n with t frames. We cluster the activations of the

first block of size (nt, c, h, w) which groups t frames into g clusters and outputs new activations of size (ng, c, h, w), as input to the next

network blocks. Our full video method efficiently utilizes all frames and is end-to-end trainable.

Frames

0

10

20

30

C
u

m
u

la
ti

v
e

H
am

m
in

g
 D

is
ta

n
ce

0
2

5

8

11

13

18

25
26

30

Figure 3. An illustration of our two clustering algorithms. The

numbers on the solid line are pair-wise Hamming distances and

the solid line is the cumulative Hamming distance of frame f1 to

f10. For g=3 clusters, the cumulative clustering groups frames by

dividing the total cumulative distance on the y-axis into 3 equally

distanced segments, as shown with the dashed lines resulting in the

3 clusters (f1−f4), (f5−f7) and (f8−f10). The slope clustering

algorithm is based on the slope of the curve and here selects the

top-2 largest slopes, as shown with the solid green lines, which

results in the 3 clusters: (f1−f6), (f7), (f8−f10).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Frames

H
am

m
in

g
 D

is
ta

n
ce

Figure 4. Hamming distances between similar frames and dissimi-

lar frames across 4 blocks of ResNet. The frames are taken from a

single Breakfast [25] video. We denote the frames that are similar

to their neighbors with circles and the dissimilar ones with squares.

Hamming distances are consistent across blocks.

3.3. Temporal clustering and aggregation

Using our proposal in Eq. (5) allows training on all video

frames. We group frames based on the sign agreement of

their activations. An efficient way to do this, is to binarize

the activation values by using the sign function and com-

pute a fast Hamming distance between binarized activations

to determine which frames to group.

Consecutive frames in a video are more likely to be sim-

ilar in appearance and are thus more likely to have simi-

larly signed activations. Therefore, we explore two vari-

ants of a temporal clustering algorithm based on Hamming

distances, where we allow a fixed number of clusters g to

match the available memory. We employ the temporal or-

der of video frames and calculate Hamming distances only

with neighboring frames. Fig. 3 illustrates the two temporal

clustering algorithms we consider here: cumulative cluster-

ing and slope clustering. We start by calculating the cumu-

lative Hamming distance C(x) for neighboring frames along

the temporal order:

CN (x) =

N−1
∑

i=1

H(xi,xi+1), (8)

where xi is the binarized activation of frame i, H(·, ·) is the

Hamming distance, and N is the total number of frames.

For cumulative clustering, we divide the total cumulative

Hamming distance, C(x), into g even segments, where the

cluster id for frame i is ⌈g Ci(x)
CN (x)⌉. For the slope clustering,

the boundaries of the segments are defined by the frame in-

dexes corresponding to the top-g largest slopes where the

cumulative distance increases the most.

For efficiency, we cluster early on in the network, and

input to the subsequent layers only aggregated activations.

We assume that the sign of the activations corresponding

to two similar frames, approximately agree throughout the

network. To validate this, we visualize in Fig. 4 the Ham-

ming distance over activations corresponding to similar and

dissimilar frames. The distances corresponding to similar

frames remain consistent across different layers.

14895

Putting everything together, we input a set of n videos

into our TSM-based [28] network architecture. After the

first block, we apply temporal clustering and average the

activations within each cluster, giving rise to g activations

per video. These aggregated activations are input to the sub-

sequent blocks of the network. Our method efficiently uti-

lizes all frames for training and it is end-to-end trainable,

as the gradients propagate directly through the aggregated

feature-maps. Fig. 2 depicts the outline of our method.

4. Experiments

We evaluate our method on the action recognition

datasets Something-Something V1 & V2 [14], UCF-

101 [37], HMDB51 [26] and Breakfast [25]. The consistent

improvements show the effectiveness and generality of our

method. We validate and analyze our method on a fully con-

trolled Move4MNIST dataset we created. We also include

ablation studies of the components of our method.

Datasets. Something-Something V1 [14] consists of 86k

training videos and 11k validation videos belonging to 174

action categories. The second release V2 of Something-

Something increase the number of videos to 220k. The

UCF101 [37] dataset contains 101 action classes and 13,320

video clips. The HMDB51 [26] dataset is a varied col-

lection of movies and web videos with 6,766 video clips

from 51 action categories. Breakfast [25] has long videos

of human cooking activities with 10 categories with 1,712

videos in total, with 1,357 for training and 335 for testing.

Our fully controlled dataset Move4MNIST has four action

classes {move up, move down, move left, move right}, and

1,800 videos for training and 600 videos for testing. Each

video has 32 frames, with a digit from MNIST [27] mov-

ing on a UCF-101 video background. To obtain a per-frame

ground truth of which frames are relevant we randomly in-

serted a consecutive chunk of UCF-101 background frames,

black frames and frames with MNIST digits that are not part

of the target classes. An example is shown in Fig. 7.

Training & Inference. Following the setting in TSM [28],

our models are fine-tuned from Kinetics [23] pre-trained

weights and we freeze the Batch Normalization [18] lay-

ers for HMDB51 [26] and UCF101 [37] datasets. For other

datasets, our models are fine-tuned from ImageNet [5] pre-

trained weights. To optimize the GPU we train with a fixed

number of frames per batch. If the video has less frames,

we pad it repeatedly with the last video frame. We com-

pare and cluster the activations of all the frames in each

video, and get g average activations for each video, from

the first block of our model. We set the number of clusters

to g = {8, 16} to align with the sub-sampling methods us-

ing 8 or 16 frames. During testing, we follow the setting of

TSM and sample one clip per video and use the full resolu-

tion image with the shorter side 256.

Backbone architecture. For a fair comparison with the

state-of-the-art, we evaluate our method on the TSM [28]

backbone replying on the ResNet-50 [16] architecture. We

use TSM with a ResNet-18 as the backbone for the experi-

ments on our toy dataset Move4MNIST and for model anal-

ysis on the Breakfast dataset.

4.1. Are more frames better?

To make it computationally possible to use all individual

frames we evaluate on the fully controlled Move4MNIST

to test if using more frames during training is better than

sub-sampling. We use here the ResNet-18 [16] backbone

pretrained on ImageNet [5] and compare with TSM [28].

We evalute slope clustering and cumulative clustering, and

a cluster-free uniform grouping of evenly distributed seg-

ments and then aggregating them (Ours-uniform).

Model #Frames #Clusters FLOPs Runtime Top-1

/Video Mem./Video

TSM 8 - 14.56G 1.04GB 90.13 ± 0.38

TSM 16 - 29.12G 1.72GB 93.78 ± 0.33

TSM all - 58.24G 3.15GB 98.83 ± 0.16

Ours-uniform all 8 28.61G 1.56GB 90.25 ± 0.28

Ours-slope all 8 28.61G 1.56GB 93.33 ± 0.19

Ours-cumulative all 8 28.61G 1.56GB 94.08 ± 0.25

Ours-uniform all 16 38.51G 1.79GB 92.73 ± 0.25

Ours-slope all 16 38.51G 1.79GB 94.06 ± 0.18

Ours-cumulative all 16 38.51G 1.79GB 95.27 ± 0.21

Table 1. Training with all frames gives best accuracy. Our

method with slope or cumulative clustering outperforms the uni-

form grouping of evenly distributed segments and frame sub-

sampling. Our method has less FLOPs and runtime memory usage

than TSM training with all frames.

Table 1 shows that TSM trained on all the 32 frames of

a video in Move4MNIST significantly outperforms TSM

trained on 8 and 16 sub-sampled frames. The uniform

grouping of evenly distributed segments does not much bet-

ter than random sub-sampling, and uniform grouping per-

forms worse than random sub-sampling when the frame and

cluster numbers increased from 8 to 16. This can be ex-

plained since the videos in the Move4MNIST contain black

frames, UCF-101 background frames, and frames contain-

ing another digits at random positions, which can make sub-

sampling miss frames related to the task and evenly dis-

tributed segments group frames wrongly. Both our cluster-

ing approaches with 8 and 16 clusters do better than evenly

distributed segments or sub-sampling with 8 or 16 frames as

they can adapt to the content and dynamically choose which

frames to group. In addition, our method has significantly

reduced FLOPs and runtime memory when compared to the

baseline on all frames.

4.2. Do similar frames have similar gradients?

In this experiment, we evaluate our assumption that sim-

ilar frame activations have similar gradients. The activa-

14896

Video 1 Video 2 Video 3

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0

A
ct

iv
at

io
ns

 E
uc

lid
ea

n
D

is
. Euclidean Distance

0.00

0.04

0.08

Hamming Distance

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0
Euclidean Distance

0.00

0.04

0.08

Hamming Distance

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0
Euclidean Distance

0.00

0.04

0.08

A
ct

iv
at

io
ns

 H
am

m
in

g
D

is
.

Hamming Distance

Figure 5. An illustration of activation distance versus gradient distance for frames from three videos in Move4MNIST dataset. For frames

that are similar with respect to recognizing the action, the activation distance and the gradients distance between them have a nearly linear

relation for both the Euclidean distance and the Hamming distance. Our assumption that frames having similar activations with respect to

the task have similar gradients is validated.

tions and gradients are taken from the 1st block of ResNet-

18. We show the Euclidean and the Hamming activa-

tion distance versus the gradient Euclidean distance be-

tween all 32 ∗ 31/2 = 496 frame pairs for three videos

in Move4MNIST in Fig. 5. For both the Euclidean distance

and the Hamming distance the relation between activations

and gradients is close to linear. It validates our assumption

that frames having similar activations with respect to the

task have similar gradients.

We compare the ground truth gradients when training

truly on all frames to our efficient approximation. We use 16

clusters and compare our approximate gradients to the real

gradients which are from 3rd block of ResNet-18 for a video

in Move4MNIST. We compare the results of our method

with cumulative clustering, slope clustering and uniform

grouping. Results in Fig. 6 show that compared to uni-

form grouping, cumulative clustering and slope clustering

give smaller Euclidean distance between the single gradi-

ent from each cluster and the sum of gradients of frames in

the corresponding cluster. And cumulative clustering gives

even smaller gradients differences than slope clustering. In

other words, it means that our method with cumulative clus-

tering (the right hand side of Eq. (1)) approximates the stan-

dard gradients calculation (the left hand side of Eq. (1)) in

the network with a small difference.

4.3. Analyzing model properties

We evaluate the clustering methods, the number of clus-

ters, and the training time efficiency on Breakfast and

Move4MNIST with a ResNet-18 backbone.

Different temporal clustering methods. We compare

slope clustering, cumulative clustering, and uniform group-

ing where the videos are split into equal segments. From Ta-

ble 2, cumulative clustering outperforms slope clustering,

while uniform grouping has the lowest top-1 accuracy. This

is because equal temporal grouping merges non similar

frames together leading to linear approximations of non-

1 2 3 4 5 6 7 8 9 10 111213141516
Clusters

0.00

0.05

0.10

G
ra

di
en

ts
 E

uc
lid

ea
n

D
is

ta
nc

e Cumulative
Slope
Uniform

Figure 6. Comparing the Euclidean distance between gradients of

the ground truth of truly using all frames to our efficient approxi-

mation per cluster for cumulative clustering, slope clustering and

uniform grouping on Move4MNIST. Compared to uniform group-

ing and slope clustering, cumulative clustering results in smaller

gradients difference and thus a better approximation.

Model #Frames #Clusters Tr. sec/epoch Top-1

TSM 8 - 97.6 59.1

TSM 16 - 113.7 61.4

Ours-uniform all 8 100.1 58.3

Ours-slope all 8 99.6 60.7

Ours-cumulative all 8 101.3 62.0

Ours-uniform all 16 114.0 60.2

Ours-slope all 16 114.5 63.7

Ours-cumulative all 16 115.2 64.4

Table 2. With 8 and 16 clusters we consistently outperform TSM

with 8 and 16 frames for comparable training time on the Breakfast

dataset.

linear information and incorrect network updates, resulting

in a low action recognition accuracy. A similar trend is also

visible on the Move4MNIST dataset in Table 1.

14897

Figure 7. Temporal clustering results for a video in Move4MNIST.

Cumulative temporal clustering groups frames more accurately

than slope temporal clustering.

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

Frames No.

Ep
oc

hs
 N

o.

Figure 8. Cumulative temporal clustering results over epochs for

six videos in the Breakfast dataset. Each cluster is shown in a dif-

ferent color. Clusters contains segments with different lengths.

Our cumulative temporal clustering groups frames with similar

activations together. The cluster lengths change according to the

changes in the frame activations during training.

In Fig. 7, we show the temporal clustering results for a

small number of frames of a Move4MNIST video. Cumu-

lative clustering correctly groups similar frames together,

while slope clustering groups moving zero frames and black

frames together.

Number of clusters. We conduct experiments using 8 and

16 clusters for our method, which follows the protocol of

TSM with 8 and 16 frames for training. Table 2 shows that

using 16 clusters consistently outperforms using 8 clusters

for all clustering methods. A larger number of clusters im-

proves accuracy. In the extreme case, the cluster numbers

equal the number of frames in a video, which is equiva-

lent with using all frames for training. From the table we

can also see that our cumulative temporal clustering imple-

mentation improves the top-1 accuracy by 2.9% and 3.0%,

separately for 8 clusters and 16 clusters comparing to TSM

with 8 and 16 frames.

To show that our cumulative temporal clustering algo-

rithm is different from the naive uniform grouping, we vi-

Model Backbone #Frames #Clusters Top-1

ResNet-152[17] ResNet152 64 - 41.1%

ActionVLAD [17] ResNet152 64 - 55.5%

VideoGraph [17] ResNet152 64 - 59.1%

TSM [28] (our impl.) ResNet50 16 - 72.1%

Ours-slope ResNet50 all 16 74.9%

Ours-cumulative ResNet50 all 16 76.6%

Table 3. Our method using either slope temporal clustering or cu-

mulative temporal clustering compared to existing works on the

Breakfast dataset. Our proposal outperforms TSM, and signifi-

cantly exceeds in top-1 accuracy methods using the deeper back-

bone architecture, ResNet-152. By using all frames our method

has an advantage on long-term video action recognition.

sualize the 8 clusters obtained from cumulative temporal

clustering for six videos over different epochs in the Break-

fast dataset in Fig. 8. Different videos have different seg-

ment lengths in the cumulative temporal clustering, which

takes the similarity of frame activations into consideration.

In Fig. 8, we also show that the cluster length changes over

epochs during training, since the activations change during

training.

Efficiency of training time. Table 2 gives the training time

per epoch for all the models. Our method with 8 clusters

and 16 clusters only has an increase of 3.7 seconds and

1.5 seconds in training time per epoch, when compared to

TSM with 8 frames and 16 frames. The results show that

our method is efficient during training time, while using all

video frames.

4.4. Comparison with the state­of­the­art

We compare our method with the state-of-the-art on

Something-Something V1&V2, Breakfast, UCF-101 and

HMDB51. All methods use ResNet-50 pre-trained on Ima-

geNet as a backbone, unless specified otherwise.

Comparison on the Breakfast dataset. We compare our

method with existing work on the Breakfast dataset, which

contains long action videos. Our method using either

slope temporal clustering or cumulative temporal cluster-

ing largely outperforms the three methods using ResNet-

152 as a backbones, in Table 3. Compared to TSM using 16

sub-sampled frames, our method improves the top-1 accu-

racy by 2.8% and 4.5% with slope temporal clustering and

cumulative temporal clustering, respectively. Methods us-

ing sub-sampling can easily miss important frames for the

recognition task on long action videos. Our method has an

advantage on the long videos for action recognition, by ef-

ficiently utilizing all the frames.

Comparison on the Something-Something dataset. In

Table 5, we list the results of our method compared to other

methods on the Something-Something V1&V2 datasets.

We achieve state-of-the-art performance on both V1 and

14898

Model Backbone Pre-train #Frames #Clusters Top-1 UCF-101 Top-1 HMDB51

TSM [28] (our impl.) ResNet50 Kinetics 1 - 91.2% 65.1%

TSN [28] ResNet50 Kinetics 8 - 91.7% 64.7%

SI+DI+OF+DOF [1] ResNeXt50 Imagenet dynamic images - 95.0% 71.5%

TSM [28] ResNet50 Kinetics 8 - 95.9% 73.5%

STM [21] ResNet50 ImageNet+Kinetics 16 - 96.2% 72.2%

Ours-slope TSM-ResNet50 Kinetics all 8 96.2% 73.3%

Ours-cumulative TSM-ResNet50 Kinetics all 8 96.4% 73.4%

Table 4. Top-1 accuracy on UCF-101 and HMDB51. Our method performs only slightly better than the state-of-the-art on the scene-related

datasets UCF-101 and HMDB51. These datasets do not have much frame diversity per video, thus, the improvement of our method over

sampling methods is limited.

Model #Frames #Clusters Top-1 V1 Top-1 V2

TSN [28] 8 - 19.7% 30.0%

TRN-Multiscale [28] 8 - 38.9% 48.8%

TSM [28] 8 - 45.6% 59.1%

TSM [21] 16 - 47.2% 63.4%

STM [21] 8 - 49.2% 62.3%

STM [21] 16 - 50.7% 64.2%

Ours-slope all 8 46.7% 60.2%

Ours-cumulative all 8 49.5% 62.7%

Ours-cumulative all 16 51.4% 65.1%

Table 5. Top-1 accuracy on Something-Something V1 and V2

datasets. Our method using cumulative temporal clustering outper-

forms the state-of-the-art methods on both Something-Something

V1 and V2. Our method achieves limited accuracy improvement

for shorter videos.

V2, with outperforming STM of 8 frames by 0.3% and 0.4%

for V1 and V2, and STM of 16 frames by 0.7% and 0.9%

for V1 and V2 respectively. Comparing to TSM, we sig-

nificantly improve the top-1 accuracy of 8 frames by 3.9%

and 3.5%, and the top-1 accuracy of 16 frames by 4.2% and

1.7% for the V1 and V2 datasets. Although the Something-

Something dataset is characterized by temporal variations,

the video clips are short compared to the Breakfast dataset.

The methods using frame sampling heuristics can capture

the main movement in videos. Therefore, our accuracy im-

provement is not as pronounced as for the Breakfast dataset.

Comparison on the UCF-101 and HMDB51 datasets. We

train with 8 clusters and evaluate over three splits and re-

port averaged results in Table 4. Our performance is on par

with state-of-the-art methods on both datasets. The UCF-

101 and HMDB51 have a scene-bias, where motion plays

a limited role and just a few number of frames –or even a

single frame– is sufficient. Thus, methods relying on sam-

pling heuristics can correctly classify the actions and our

method using all frames is not expected to improve results.

To test this, we show results with a single frame in Table 4

which shows that TSM with 1 frame achieves comparable

accuracy to TSN with 8 frames on UCF-101 and outper-

forms TSN with 8 frames on HMDB51. For scene-biased

datasets, using all frames does not bring accuracy benefits.

5. Conclusion

We propose an efficient method for training action recog-

nition deep networks without relying on sampling heuris-

tics. Our work offers a solution to using all video frames

during training based on the assumption that similar frames

have similar gradients, leading to similar parameter updates.

To this end, we efficiently find frames that are similar with

respect to the classification task, by using a cumulative tem-

poral clustering algorithm based on Hamming distances.

The clustering based on Hamming distances enforces that

activations in a cluster agree in signs, which is a require-

ment entailed by our assumption that we can approximate

the gradients of multiple frames with a single gradient of

an aggregated frame. We accumulate the activations within

each cluster to create new representations used to classify

the actions. Our proposed method shows competitive re-

sults on large datasets when compared to existing work.

Despite our state of the art results, we identify several

limitations. One limitation is that the number of clusters is

fixed and thus not well-suited for inhomogeneous videos

with more semantic (shot) changes than clusters. This

could create a dependency for action proposals or other

approaches to pre-segment a video in homogeneous seg-

ments which somewhat counters the philosophy of using

full video action recognition. Another limitation is that for

grouping frames the only non-linearity we consider is the

activation function and do not use the non-linearity in the

loss. This limitation seems insurmountable, as memory

constraints prevent us to store all frame activations for

when the loss is computed. Nevertheless, with our current

results and analysis, we make a first move for action

recognition to go full video.

Acknowledgments This work is part of the research

program Efficient Deep Learning (EDL), which is

(partly) financed by the Dutch Research Council

(NWO).

14899

References

[1] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action

recognition with dynamic image networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 40(12):2799–

2813, 2018. 2, 8

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 6299–6308, 2017. 1, 2

[3] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David

Begert, and Elliot Holtham. Reversible architectures for ar-

bitrarily deep residual neural networks. In AAAI, 2018. 1

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.

Training deep nets with sublinear memory cost. arXiv preprint

arXiv:1604.06174, 2016. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255, 2009. 1, 5

[6] Tran Du, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. C3d: Generic features for video analysis.

Corr, 2(8), 2014. 2

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 6202–6211, 2019. 2

[8] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 1933–1941, 2016.

2

[9] Basura Fernando, Efstratios Gavves, José Oramas, Amir Gho-

drati, and Tinne Tuytelaars. Rank pooling for action recog-

nition. IEEE transactions on pattern analysis and machine

intelligence, 39(4):773–787, 2016. 2

[10] Harshala Gammulle, Simon Denman, Sridha Sridharan, and

Clinton Fookes. Two stream lstm: A deep fusion framework

for human action recognition. In 2017 IEEE Winter Confer-

ence on Applications of Computer Vision (WACV), pages 177–

186. IEEE, 2017. 2

[11] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 971–980, 2017. 2

[12] Negar Goli and Tor M Aamodt. Resprop: Reuse sparsi-

fied backpropagation. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

1548–1558, 2020. 2

[13] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B

Grosse. The reversible residual network: Backpropagation

without storing activations. In Advances in neural information

processing systems, pages 2214–2224, 2017. 1, 2

[14] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,

Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin

Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,

et al. The” something something” video database for learn-

ing and evaluating visual common sense. In ICCV, volume 1,

page 5, 2017. 5

[15] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and im-

agenet? In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 6546–6555, 2018. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 770–778, 2016. 5

[17] Noureldien Hussein, Efstratios Gavves, and Arnold WM

Smeulders. Videograph: Recognizing minutes-long human

activities in videos. ICCV 2019, Workshop on Scene Graph

Representation and Learning, 2019. 7

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. Proceedings of the 32nd International Confer-

ence on Machine Learning, 2015. 5

[19] Mihir Jain, Jan C Van Gemert, and Cees GM Snoek. What

do 15,000 object categories tell us about classifying and lo-

calizing actions? In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 46–55, 2015.

2

[20] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-

tional neural networks for human action recognition. IEEE

transactions on pattern analysis and machine intelligence,

35(1):221–231, 2012. 2

[21] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and

Junjie Yan. Stm: Spatiotemporal and motion encoding for

action recognition. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2000–2009, 2019. 8

[22] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014. 2

[23] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. CoRR, 2017. 5

[24] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:

Sampling salient clips from video for efficient action recogni-

tion. In Proceedings of the IEEE International Conference on

Computer Vision, pages 6232–6242, 2019. 1, 2

[25] H. Kuehne, A. B. Arslan, and T. Serre. The language of ac-

tions: Recovering the syntax and semantics of goal-directed

human activities. In Proceedings of Computer Vision and Pat-

tern Recognition Conference (CVPR), 2014. 4, 5

[26] Hilde Kuehne, Hueihan Jhuang, E. Garrote, T. Poggio, and

Thomas Serre. Hmdb: A large video database for human mo-

tion recognition. 2011 International Conference on Computer

Vision, pages 2556–2563, 2011. 5

[27] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-

written digit database. 2010. 5

[28] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift

module for efficient video understanding. In Proceedings of

the IEEE International Conference on Computer Vision, pages

7083–7093, 2019. 1, 2, 4, 5, 7, 8

14900

[29] Mateusz Malinowski, Grzegorz Swirszcz, Joao Carreira, and

Viorica Patraucean. Sideways: Depth-parallel training of

video models. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 11834–

11843, 2020. 2

[30] Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson,

and Ryan P Adams. Randomized automatic differentiation.

CoRR, 2020. 2

[31] Jian Ren, Xiaohui Shen, Zhe Lin, and Radomir Mech. Best

frame selection in a short video. In The IEEE Winter Confer-

ence on Applications of Computer Vision, pages 3212–3221,

2020. 1, 2

[32] Konrad Schindler and Luc Van Gool. Action snippets: How

many frames does human action recognition require? In 2008

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–8, 2008. 2

[33] Fadime Sener, Dipika Singhania, and Angela Yao. Temporal

aggregate representations for long-range video understanding.

In European Conference on Computer Vision, pages 154–171,

2020. 2

[34] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014. 2

[35] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel,

and Ming Shao. A multi-stream bi-directional recurrent neu-

ral network for fine-grained action detection. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 1961–1970, 2016. 2

[36] Sibo Song, Ngai-Man Cheung, Vijay Chandrasekhar, and

Bappaditya Mandal. Deep adaptive temporal pooling for ac-

tivity recognition. In Proceedings of the 26th ACM interna-

tional conference on Multimedia, pages 1829–1837, 2018. 2

[37] Khurram Soomro, Amir Roshan Zamir, and M Shah. A

dataset of 101 human action classes from videos in the wild.

Center for Research in Computer Vision, 2(11), 2012. 5

[38] Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz.

Gate-shift networks for video action recognition. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 1102–1111, 2020. 1, 2

[39] Amin Ullah, Jamil Ahmad, Khan Muhammad, Muhammad

Sajjad, and Sung Wook Baik. Action recognition in video

sequences using deep bi-directional lstm with cnn features.

IEEE Access, 6:1155–1166, 2017. 2

[40] Vivek Veeriah, Naifan Zhuang, and Guo-Jun Qi. Differential

recurrent neural networks for action recognition. In Proceed-

ings of the IEEE international conference on computer vision,

pages 4041–4049, 2015. 2

[41] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-

works: Towards good practices for deep action recognition. In

European conference on computer vision, pages 20–36, 2016.

1, 2

[42] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang

Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Train-

ing state-of-the-art cnns with over 80% energy savings. In

Advances in Neural Information Processing Systems, pages

5138–5150, 2019. 2

[43] Simon Wiedemann, Temesgen Mehari, Kevin Kepp, and

Wojciech Samek. Dithered backprop: A sparse and quan-

tized backpropagation algorithm for more efficient deep neu-

ral network training. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Workshops,

pages 720–721, 2020. 2

[44] Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Fe-

ichtenhofer, and Philipp Krahenbuhl. A multigrid method

for efficiently training video models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 153–162, 2020. 2

[45] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and

Shilei Wen. Multi-agent reinforcement learning based frame

sampling for effective untrimmed video recognition. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 6222–6231, 2019. 1, 2

[46] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S

Davis. Liteeval: A coarse-to-fine framework for resource ef-

ficient video recognition. In Advances in Neural Information

Processing Systems, pages 7780–7789, 2019. 2

[47] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S. Davis. Adaframe: Adaptive frame selection for

fast video recognition. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR),

June 2019. 1, 2

[48] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-

Fei. End-to-end learning of action detection from frame

glimpses in videos. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2678–2687,

2016. 1, 2

[49] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-

ralba. Temporal relational reasoning in videos. In Proceed-

ings of the European Conference on Computer Vision (ECCV),

pages 803–818, 2018. 2

[50] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In Proceedings of the European conference on

computer vision (ECCV), pages 695–712, 2018. 1, 2

14901

